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ABSTRACT 

Efficient discovery of frequent patterns 
from large databases is an active research area in 
data mining with broad applications in industry 
and deep implications in many areas of data 
mining. Although many efficient frequent-
pattern mining techniques have been developed 
in the last decade, most of them assume 
relatively small databases, leaving extremely 
large but realistic datasets out of reach. 

 A practical and appealing direction is 
to mine for closed or maximal itemsets. These 
are subsets of all frequent patterns but good 
representatives since they eliminate what is 
known as redundant patterns. The practicality of 
discovering closed or maximal itemsets comes 
from the relatively inexpensive process to mine 
them in comparison to finding all patterns. In 
this paper we introduce a new approach for 
traversing the search space to discover all 
frequent patterns, the closed or the maximal 
patterns efficiently in extremely large datasets. 
We present experimental results for finding all 
three types of patterns with very large database 
sizes never reported before. Our implementation 
tested on real and synthetic data shows that our 
approach outperforms similar state-of-the-art 
algorithms by at least one order of magnitude in 
terms of both execution time and memory usage, 
in particular when dealing with very large 
datasets. 

1 INTRODUCTION 

Discovering frequent patterns is a 
fundamental problem in data mining. Many 
efficient algorithms have been published on this 
problem in the last 10 years. Most of the existing 
methods operate on databases made of 

comparatively small database sizes. Given 
different small datasets with different 
characteristics, it is difficult to say which 
approach would be a winner. Moreover, on the 
same dataset with different support thresholds 
different winners could be proclaimed. 

 Difference in performance becomes 
clear only when dealing with very large datasets. 
Novel algorithms, otherwise victorious with 
small and medium datasets, can perform poorly 
with extremely large datasets. There is obviously 
a chasm between what we can mine today and 
what needs to be mined. It is true that new 
attempts toward solving such problems are made 
by finding the set of frequent closed itemsets 
(FCI) [11, 12, 13] and the set of maximal 
frequent patterns [3, 7, 8]. 

1.1 PROBLEM STATEMENT 

The problem of mining association rules 
in transactional data was introduced in [1]. The 
data could be retail sales in the form of customer 
transactions, text documents, or even medical 
images. Association rules have been shown to be 
useful for applications such as market basket 
analysis, decision support, telecommunication, 
diagnosis, affinity analysis, recommender 
systems, etc. Most association rule algorithms 
generate association rules in two steps: (1) 
Generate all frequent itemsets, and (2) Construct 
all rules using these itemsets. In this paper, we 
are solely interested in the first step.  

Formally, as defined in [2], the problem 
is stated as follows: Let I = {i1; i2;..; im} be a set 
of literals, called items and m is considered the 
dimensionality of the problem. Let D be a set of 
transactions, where each transaction T is a set of 
items such that T is a subset of I. A unique 
identifier TID is given to each transaction. A 
transaction T is said to contain X, a set of items 
in I, if X is a subset of T. An association rule is 
an implication of the form “X ≡> Y ”, where X is 



a subset of I, Y is a subset of I, and X ∩ Y = Φ. 
An itemset X is said to be frequent if its support 
s is greater than or equal to a given minimum 
support threshold σ. A frequent itemset M is 
considered maximal if there is no other frequent 
set that is a superset of M. A frequent itemset C 
is considered closed if there is no other frequent 
set that is a superset of C and has the same 
support as C. 

1.2 RELATED WORK 

The most important, and at the basis of 
many other approaches and algorithms, is apriori 
[2]. The property that is at the heart of apriori 
and forms the foundation of most algorithms 
simply states that for an itemset to be frequent all 
its subsets have to be frequent. This anti-
monotone property reduces the candidate itemset 
space drastically. However, the generation of 
candidate sets, especially when very long 
frequent patterns exist, is still very expensive. 
Moreover, apriori is heavily I/O bound. Another 
approach that avoids generating and testing 
many itemsets is FP-Growth [9]. FP-Growth 
generates, after only two I/O scans, a compact 
prefix tree representing all sub-transactions with 
only frequent items. A clever and elegant 
recursive method mines the tree by creating 
projections called conditional trees and discovers 
patterns of all lengths without directly generating 
all candidates the way apriori does. However, 
the recursive method to mine the FP-tree requires 
significant memory, and large databases quickly 
blow out the memory stack. Another innovative 
approach is COFI [5]. COFI is faster or as fast as 
FP-Growth and requires significantly less 
memory. The idea of COFI, which we adopt in 
this paper, is to build projections from the FP-
tree each corresponding to sub-transactions of 
items co-occurring with a given frequent item. 
These trees are built, efficiently mined and 
discarded one at a time making the footprint in 
memory significantly small. The COFI algorithm 
generates candidates using a top down approach, 
where its performance shows to be severely 
affected while mining databases that have 
potentially long candidate patterns that turn to be 
not frequent, as COFI needs to generate 
candidate subpatterns for all its candidate 
patterns. We build upon this approach by 
changing the traversal approach, and finding the 
set of closed or maximal frequent patterns. We 
also resolve the problem of COFI using a new 
data structure. Finding the set of closed frequent 
patterns has been studied in the literature. In this 

section we will examine four state-of-the-art 
algorithms in this area, A-Close [11] is an 
apriori-like algorithm. This algorithm mines 
directly for closed frequent itemsets. It uses a 
breadth-search strategy. This algorithm shows to 
be one-order of magnitude faster than apriori, 
when mining with a small support. This 
algorithm shows, however, poor performance 
compared to apriori when mining with high 
support especially when we find a small set of 
frequent patterns as it consumes most of its 
computation power in computing the closure of 
itemsets. This algorithm did also show weak 
results when mining relatively long patterns. 
CLOSET+ [12] is an extension of the FP-Growth 
algorithm. MAFIA [3] is originally designed to 
mine for maximal itemsets, but it has an option 
to mine for closed itemsets. It uses a vertical 
bitmap representation. CHARM [13] is just like 
MAFIA in using a vertical representation of the 
database. It adopts the Diffset technique to 
reduce the size of intermediate tidsets. Mining 
the set of maximal patterns has also been 
investigated at length. where some of the state-
of-the-art algorithms are: GENMAX [7], 
MAFIA [3], and FPMAX [8]. 

1.3 CONTRIBUTIONS 

In this paper we propose a new traversal 
approach for the itemset lattice called leap-
traversal. Based on this approach we propose a 
framework of efficient algorithms, founded on 
our previously proposed COFI-trees in [5, 4] and 
FP-trees presented in [9], for finding closed, 
maximal, and all patterns called COFI-CLOSED, 
COFI-MAX, and COFI-ALL, forming the 
YAFIMA package (Yet Another Frequent 
Itemset Mining Algorithms). These algorithms 
mine effectively small and extremely large 
databases. They use a novel technique to 
generate candidates and to count their supports. 

 We also propose a new structure to 
partition the itemsets helping the handling of 
patterns of arbitrary length. Since testing whether 
patterns are subsets of others is a fundamental 
operation for closed and maximal itemset 
mining. 

We show that our approach with the 
new set of algorithms is efficient to mine 
extremely large datasets. The rest of this paper is 
organized as follows: We explain our new 
traversal approach in Section 2. The new COFI-



based algorithms YAFIMA are explained in 
Section 3 with illustrative examples. Section 4 
depicts the performance evaluation of this new 
approach comparing it with existing state-of-the-
art algorithms in particular for its speed, 
scalability, and memory usage on dense and 
sparse data. Section 5 concludes and highlights 
our observations. 

2 LEAP-TRAVERSAL APPROACH 

Current algorithms find patterns by 
using one of the two methods, namely: breadth-
search or depth-search. Breadth-search can be 
viewed as a bottom-up approach where the 
algorithms visit patterns of size k + 1 after 
finishing the k sized patterns. The depth-search 
approach does the opposite where the algorithm 
starts by visiting patterns of size k before visiting 
those of size k + 1. Both methods show some 
redundancy in mining specific datasets. [12] 
stated that the breadth-search is not the way to 
go. It recommends the depth-search method to 
mine for frequent long patterns. It is known that 
many datasets have short frequent patterns. Even 
for datasets that have long patterns, it does not 
mean at all that the patterns generated will be 
long. Many other frequent patterns are still short, 
and mining them using depth-search method 
might result in bad performance. In general, both 
methods show some efficiency while mining 
some databases. On the other hand, they showed 
weaknesses or inefficiency in many other cases. 

To understand this process fully, we 
will try to focus on the main advantages and 
drawbacks of each one of these methods in order 
to find a way to make use of the best of both of 
them, and to diminish as much as possible their 
drawbacks. As an example, in the context for 
mining for maximal patterns, assume we have a 
transactional database that is made of a large 
number of frequent 1-itemsets, and has maximal 
patterns with relatively small lengths. The trees 
built from such database are usually deep as they 
have a large number of frequent 1-itemsets 
especially if they are made of relatively long 
transactions. Traversing in depth-search manner 
would provide us with potential long patterns 
that end-up non-frequent. In such cases, the 
depth-search method is not favored. However, if 
the maximal patterns generated are relatively 
long with respect to the depth of the tree, then 
the depth-search strategy is favored as most of 
the potential long patterns that could be found 
early tend to be frequent. Consequently, many 

pruning techniques could be applied to reduce 
the search space. On the other hand, mining 
transactional databases that reveal long maximal 
patterns is not favored using breadth-search 
manner, as such algorithms consume many 
passes over the database to reach the long 
patterns. Such algorithms generate many 
frequent patterns at level k that would be omitted 
once longer superset patterns at level k + 1, or k 
+ l for any l, appear. These generation and 
deletion steps become a bottleneck while mining 
transactional databases of long frequent patterns 
using the breadth-search methods. 

 From the above, we can summarize the 
main drawbacks of each one of these methods as 
follows: Bottom-up approaches generate too 
many frequent patterns that turn out to be not 
part of the maximal set and get deleted as longer 
frequent superset patterns appear. The longer 
maximal patterns we have, the more severe this 
problem becomes. For example; to find a 
frequent pattern of size 10 we need to find all 
patterns of sizes 1 to 9 before we reach the 
maximal pattern of size 10. Consequently, all 
these patterns are deleted and do not participate 
in the maximal answer set. On the other hand, 
the top-down approaches suffer from traversing 
many n + k non-frequent patterns until we reach 
the maximal frequent patterns of size k, n being 
the maximal depth of the tree.  

The following example demonstrates 
how both approaches work. Figure 1.A depicts 
10 projected transactions made of 12 items. All 
items share at least one transaction with item A. 
If we want to mine with support greater than 4, 
then all items would become frequent. Three 
maximal patterns are generated. These patterns 
are (ABCDE:6) of size 5, (AFGHI:5) also of size 
5 and (AJKL:5) of size 4. The number after a 
pattern represents its support. Discovering these 
patterns using the top-down approach (depth-
search) requires mining a tree of depth 9 which is 
the size of longest potential pattern: 
(ABCDEFGI). Although none of the potential 
patterns of size 9 to 6 are frequent, we still need 
to generate and test them. This generation 
process continues until we reach the first 
maximal patterns of size 5: (ABCDE:6) and 
(AFGHI:5). Many pruning techniques can then 
be applied to reduce the remaining search space. 
The bottom-up approach needs to create all 
patterns from sizes 2 to 6 at which point it can 
detect that there are no more maximal patterns to 
discover. All non-maximal frequent patterns of 



sizes 2 to 6 would be removed. We propose a 
combination of these approaches that takes into 
account a partitioning of the search space `a la 
COFI-tree. We call this method the leap-traversal 
approach since it selectively jumps within the 
lattice and suggests a set of patterns from 
different sizes to test where the frequent patterns 
(all, closed, or maximals) are subset of this 
suggested set.  

To illustrate the traversal, we take the 
case of closed itemsets. Step one of this approach 
is to look at the nature of the distribution of 
frequent items in the transactional database. If 
we revisit the example presented above from, 
Figure 1.A, we can see that there are only 4 
distributions of frequent items. Indeed, A, B, C, 
D, E, F, G, H, I occurs 3 times; A, B, C, D, E, J, 
K, L occurs also 3 times; A, F, G, H, I occurs 
twice; and A, J, K, L also occurs twice. We call 
each one of these patterns a frequent-path-base. 
Step 2 of this process intersects each one of these 
patterns with all other combinations of frequent-
path-bases to get a set of potential candidates. 
Step 3 counts the support of each one of the 
generated patterns. The support of each one of 
them is the summation of supports of all its 
superset of frequent-path-base patterns. Step 4 
scans these patterns to remove non-frequent ones 
or frequent ones that already have a frequent 
superset with the same support. The remaining 
patterns can be declared as closed patterns. 
Figure 1.B illustrates the steps needed to 
generate the closed patterns of our example from 
Figure 1.A. The major goals of this approach are 
the followings:  

1. Avoid the redundancy of testing 
patterns either from size 1 until patterns of size k, 
where k is the size of the longest frequent pattern 
or from patterns of size n until patterns of size k, 
where n is the size of the longest candidate 
pattern. 

2. We only check the longest potential 
patterns that already exist in the transactional 
database, even if they are of different lengths. In 
Figure 1.A we can find that there is no need to 
test patterns such as ABJ or AFC since they 
never occur in the transactional database. We 
also do not need to test patterns such as AB since 

they never occur alone without any other 
frequent items in the transactional databases. 

The main question in this approach is 
whether we could efficiently find the frequent-
path-bases. The answer is yes, by using the FP-
tree [9] structure to compress the database and to 
avoid multiple scans of the databases and COFI-
trees [5] to partition the sub-transactions as we 
wish to do, to generate the frequent-path-bases 
as illustrate in the next section.  

3 COFI-BASED ALGORITHMS 

In this section we explain the three 
mining algorithms COFI-CLOSED, COFI-
MAX, and COFI-ALL. COFI-CLOSED is 
explained in details while COFI-MAX and 
COFI-ALL are explained later by only 
highlighting their differences from the COFI-
CLOSED algorithm. 

3.1 COFI-CLOSED ALGORITHM 

COFI-CLOSED algorithm is explained 
by a running example. The complete pseudo-
code of the algorithm is detailed in Figure 2.A. 
The transactional database in Figure 3.A needs to 
be mined using support greater or equal to 3. The 
first step is to build the FP-tree data-structure in 
Figure 3.B. This FP-tree data structure reveals 
that we have 8 frequent 1-itemsets. These are 
(A:10, B:8, C:7, D:7, E:7, F:6, G:5, H:3). COFI-
trees are built after that one at a time starting 
from the COFI-tree of the frequent item with 
lowest support, which is H. We refer the reader 
to [5] for more reading about COFI-tree. Since, 
in the order imposed, no other COFI-tree has 
item H then any closed pattern generated from 
this tree is considered globally closed. This 
COFI-tree generates the first closed pattern HA: 
3. After that, H-COFI-tree is discarded and G-
COFI-tree, in Figure 3.C, is built and it generates 
(GABCD:3, GABC:4, GAE:3, GAD:4, and 
GA:5), a detailed explanation of the steps in 
generating these frequent patterns are described 
later in this section. F-COFI-tree is created next 
and it generates all its closed patterns using the 
same method explained later. 

 



Figure 1: (A): Projected transactional database with respect to item A. (B): Steps needed to generate 
closed patterns using the leap-traversal approach (√ indicates a discovered closed pattern. Barred 
entries are the eliminated candidates)  

 
(A)                                                                          (B) 

Figure 2: (A) COFI-CLOSED Algorithm. (B) Steps needed to generate closed patterns using OPB for 
the G-COFI-tree



 

 

Figure 3: (A) A Transactional database. (B) FP-Tree built from (A). (C) G-COFI-tree pointers from 
header tables are not presented 

 

3.2 MINING A-COFI-TREE 

Mining a COFI tree starts by finding the 
frequent-path-bases. As an example, we will 
mine the G-COFItree in Figure 3.C for closed 
patterns. We start from the most globally 
frequent item, which is A, and then traverse all 
the A nodes. If the support is greater than 
participation then the complete path from this 
node to the COFI-root is built with branch-
support equals to the difference between the 
support and participation of that node. All 
values of participation for all nodes in these 
paths are updated with the participation of the 
original node A. Frequent-path-bases (A, B, C, 
D: 2), (A, B, C, E: 1), (A, D, E: 1), and (A, B, C, 
D, E: 1) are generated from this tree. From these 
bases we create a special data structure called 
Ordered-Partitioning-Bases (OPB). The goal of 
this data structure is to partition the patterns by 
their length. Patterns with the same length are 
grouped together. This, on one hand allows 
dealing with patterns of arbitrary length, and on 
the other hand allows traversing the pattern space 
from the longest ones to the shortest ones and 
directly prunes the short ones if a frequent 
superset with same support is discovered as a 
candidate closed pattern. This OPB structure is 
an array of pointers that has a size equal to the 
length of the largest frequentpath-base. Each 
entry in this array connects all frequent-path-
bases of the same size. The first entry links all 
frequent-path-bases of size 1, the second one 

refers to all frequent-path-bases of size 2, the nth 
one points to all frequent-path-bases of size n. 
An illustrative example can be found in Figure 
2.B. Each node of the connected link list is made 
of 4 variables which are: the pattern, a pointer to 
the next node, and two number variables that 
represent the support and branch-support of this 
pattern. The support reports the number of times 
this pattern occurs in the database. The branch-
support records the number of times this pattern 
occurs alone without other frequent items, i.e. 
not part of any other superset of frequent 
patterns. This branch-support is used to identify 
the frequent-path-bases from non-frequentpath-
bases as non-frequent-path-bases have branch-
support equal to 0, while a frequent-path-base 
has branch-support equal to the number of times 
this pattern occurs independently. The branch-
support is also used to count the support of any 
pattern in the OPB. The support of any pattern is 
the summation of the branch-supports of all its 
supersets of frequent-path-bases. For example, 
to find the support for pattern X that has a length 
of k, all what we need to do is to scan the OPB 
from k + 1 to n where n is the size of OPB, and 
sum the branch-supports of all supersets of X 
that do not have a branch-support equal to 0, i.e. 
the frequent-path-bases. The superset of X, as 
explained before are easily found using the prime 
codes. 

In the above example, the first step is to 
build the OPB structure. The first pointer of this 
OPB structure points to 5 nodes which are (A, 5, 



0), (B, 4, 0), (C, 4, 0), (D, 4, 0), and (E, 3, 0) 
which can be taken from the local frequent array 
of the G-COFI-tree (Figure 3.C). The first 
number after the pattern presents the support, 
while the second number presents the branch-
support. The Second entry in this array points to 
all frequent-path-bases of size two. A null 
pointer is being linked to this node since no 
frequentpath- bases of size two are created. The 
third pointer points to one node which is (ADE, 
1,1), the fourth points to (ABCD: 2: 2) and 
(ABCE: 1, 1), the fifth and last points to 
(ABCDE: 1:1). The leap-traversal approach is 
applied in the second step on the 4 frequent-
path-bases, which are (ABCDE: 1: 1, ABCD:2 
:2, ABCE: 2: 1, and ADE: 2: 1). Intersecting 
ABCDE with ABCD gives ABCD, which 
already exists, so nothing needs to be done. 
Same occurs when interesting ABCDE with 
ABCE. Intersecting ABCDE with ADE gives 
back ADE, which also already exists. 
Intersecting ABCD with ABCE gives ABC. 
ABC is a new node of size three. It is added to 
the OPB data structure and linked from the third 
pointer as it has a pattern size of 3. The support 
and the branch-support of this node equals to 0. 
Branch-support equals to 0 indicates that this 
pattern is a result of intersecting between 
frequent-path-bases and a non-frequentpath- 
base. Intersecting ABCD with ADE gives AD. 
AD is a new node of size two. It is added to the 
OPB data structure and linked from the second 
pointer. The support and the branch-support of 
this node equal 0. Intersecting, ABCE with ADE 
gives AE. AE is also a new node of size two and 
is also added to the OPB structure, and at this 
stage we can detect that no more intersection is 
needed. The third step in the mining process is to 
find the global support for all patterns. Applying 
a top-down traversal between these nodes does 
this. If node X is a subset of a frequent-path-base 
Y then its support is incremented by the branch-
support of node Y. By doing this we can find that 
ABCD is a subset of ABCDE, which has a 
branch-support equals to 1. The ABCD support 
becomes 3 (2+1). ABCE support becomes 2, as it 
is a subset of ABCDE. At level 3 we find that 
ADE is a subset of only ABCDE so its support 
becomes 2. ABC support equals to 4. AD 
support equals to 4, and AE support equals to 3. 
At this stage all non-frequent patterns and 
frequent patterns that have a local frequent 
superset with the same support are removed from 
OPB. The remaining nodes (ABCD:3, ABC:4, 
AE:3, AD:4, and A:5) are potentially global 
closed. We test to see if they are a subset of 

already discovered closed patterns with the same 
support. If not, then we declare them as closed 
patterns and add them to the pool of closed 
patterns. These steps are presented in Figure 2.B. 
The G-COFI-tree and its OBP data structure are 
cleared from memory as there is no need for 
them any more. The same process repeats with 
the remaining COFI-trees for F and E, where any 
newly discovered closed pattern is added to the 
global pool of closed patterns.  

3.3 COFI-MAX 

Finding the maximal frequent items 
differs from finding the set of closed patterns by 
applying the following pruning techniques: 

(A) skip building some COFI-trees: Before we 
build any COFI-tree, we check all its local 
frequent items, if all its items are subsets of 
already discovered maximal patterns, then there 
is no need to build and mine this COFI-tree as all 
its sub-patterns are subsets of already discovered 
maximal patterns. 

(B) Remove all frequent-path-bases that are 
subset of already found maximal patterns: 
Each frequentpath-base is checked first to see if 
it is part of an already existing maximal pattern. 
If this check returns true, then there is no need to 
test this pattern, as it is already frequent, and a 
subset of a maximal pattern. 

(C) Count the support of frequent-path-bases 
early, and remove the frequent ones from the 
leaptraversal approach: The first step done 
after finding the frequent-path-bases is to find 
their global support. The support of each 
frequent-path-base is the summation of its 
branch-support with the branchsupport of all its 
superset of frequent-path-bases. All frequent 
frequent-path-bases are removed from the leap-
traversal approach as they will only give subsets 
of frequent patterns and will not provide us with 
any new information in the context of searching 
for maximal patterns. By doing this, we reduce 
the intersection and counting operations done 
during the leap-traversal approach. Other than 
this, the same steps applied to find the closed 
patterns are also applicable to find the set of 
maximal pattern. 

 

 



3.4 COFI-ALL 

Finding the set of all frequent patterns is 
simply done by finding the set of local maximal 
for each COFItree. There is no need to keep 
track of globally maximal patterns. From each 
locally maximal pattern,we generate its subsets. 
These are the frequent itemsets. We only need to 
find their respective support. The support of 
each pattern is the summation of the branch-
support of all its superset of frequent-path-bases. 

4 PERFORMANCE EVALUATIONS 

In this section we present a performance 
study to evaluate our new approach YAFIMA 
against most of the state-of-art algorithms that 
mine all, closed and maximal patterns. FPMAX 
and MAFIA were used for all three types of 
patterns, while Eclat was used to mine for all 
frequent patterns, CHARM to mine for closed 
itemsets, and finally GENMAX to mine for 
maximal frequent itemsets. Their respective 
authors provided us with the source code for 
these programs. All our experiments were 
conducted on an IBM P4 2.6GHz with 1GB 
memory running Linux 2.4.20-20.9 Red Hat 
Linux release 9. Timing for all algorithms 
includes the pre-processing cost such as 
horizontal to vertical conversions. The time 
reported also includes the program output time. 
We have tested these algorithms using both real 
and synthetic datasets on small and very large 
datasets. All experiments were forced to stop if 
their execution time reached our wall time of 
5000 seconds. We made sure that all algorithms 
reported the same exact set of frequent itemsets 
on each dataset. Finally, we could not report all 
our excrements in this work due to the lack of 
space. 

4.1 EXPERIMENTS ON SMALL 
DATASETS 

In this set of experiments we tested 
many datasets, UCI datasets and synthetic ones, 
with one goal in our mind: Finding the best 
mining algorithm. We tested all the enumerated 
algorithms using 4 databases downloaded from 
[6]. These databases are chess, mushroom, 
pumsb, and accidents. We have also generated 
synthetic datasets using [10]. In these sets of 
experiments we confirmed the conclusion made 
at the FIMI 2003 workshop [6], that there are no 
clear winners with small databases. Indeed, 

algorithms that were shown to be winners with 
some databases were not the winners with others. 
Some algorithms quickly lose their lead once the 
support level becomes smaller. Figure 4, depicts 
as an example the winner algorithms for these 
datasets. 

4.2 SCALABILITY 

Mining extremely large databases is the 
main objective of this research work. We used 
five synthetic datasets made of 5M, 25M, 50M, 
75M, 100M transactions, with a dimension of 
100K items, and an average transaction length of 
24 items. To the best of our knowledge these 
data sizes have never been reported in the 
literature before. Eclat, CHARM, and GENMAX 
could not mine these datasets. MAFIA could not 
mine the smallest dataset 5M in the allowable 
time frame. Only FPMAX and YAFIMA 
algorithms participated in this set of 
experiments. FP-Growth was able to mine 
efficiently for all frequent patterns up to 5 
millions. After that point, FP-Growth could not 
return a result. COFI-ALL efficiently found the 
set of all patterns up to 100M transactions. For 
the set of closed itemsets and the set of maximal 
itemsets FP-CLOSED and FPMAX mined up to 
50M transactions, while COFI-CLOSED and 
COFI-MAX mined all databases up to 100M 
transactions efficiently. All results are depicted 
in Figure 5. From these experiments we can see 
that the difference between FPMAX 
implementations and the YAFIMA algorithms 
become clearer once we mine extremely large 
datasets.YAFIMA saves at least one third of the 
execution time and in some cases goes up to half 
of the execution time compared to FP-Growth 
approach.  

4.3 MEMORY USAGE 
We also tested the memory usage by 

FPMAX, MAFIA and our approach. In many 
cases we noticed that our approach consumes 
one order of magnitude less memory than 
FPMAX and two orders of magnitude less 
memory than MAFIA. Figure 6 illustrates these 
results. We conducted experiments with the 
database size, the dimension and average 
transaction length  1 million transactions, 100K 
items and 12 items respectively. The support was 
varied from 0.1% to 0.01%. This huge difference 
in memory usage is due to the fact that YAFIMA 
algorithms clear every COFI-tree or OPB 
structure directly once the local patterns are 



determined. It never has two COFI-trees or two 
OPB structures in main memory at the same 
time. FPMAX, however, uses a recursive 
technique that keeps building the conditional 
trees for each frequent item tested and thus uses 
much more memory. Figure 6.C shows the three 
algorithms for finding maximal patterns. At a 
low support, MAFIA consumed all available 
memory and started swapping on disk. We 
remover MAFIA from the figures for closed and 
all itemsets to allow better seeing the difference 
between FP-Growth and COFI-ALL in Figure 
6.A and FP-CLOSED and COFI-CLOSED in 
Figure 6.B. In both cases FPMAX used more 
than four times the amount of memory. 

5 CONCLUSION 

Most of frequent itemset mining 
algorithms assume to work on relatively small 
dataset in comparison to what we are expected to 
deal with in real applications such as affinity 
analysis in very large web sites, basket analysis 
for large department stores, or analysis of 
tracking data from radio-frequency identification 
chips on merchandize. Performance analysis on 
small datasets cannot discriminate between 
frequent itemset mining algorithms; and when 
the execution time is in order of few seconds, the 

selection of algorithms becomes irrelevant. Yet 
with extremely large databases the issue seems 
still an open-problem since most of the existing 
algorithms cannot mine huge databases using 
either low or high support. In this work we 
presented YAFIMA, a set of new algorithms for 
mining all, closed and maximal patterns. These 
novel algorithms are based on existing data 
structures FP-tree and COFI-tree. Our 
contribution is a new way to mine those existing 
structures using a novel traversal approach, and a 
set of pruning methods to accelerate the 
discovery process. The idea is to either find the 
maximal or closed itemsets and expend them to 
find all frequent patterns. Our performance 
studies show that our approach can compete with 
the existing state of the art algorithms in many 
small datasets (real and synthetic). Even when it 
was not the winner, the difference was relatively 
small between its performance and the 
performance of winner. Yet, when we mine 
extremely large datasets, our performance 
studies showed that the YAFIMA set was able to 
mine efficiently 100 million transactions in less 
than 5000 seconds on a small desktop while 
other known approaches failed. 

 

Figure 4: Mining different small datasets: The winner algorithms

 

 

Figure 5: Scalability with very large dataset



Figure 6: Disparity in memory usage 

 

Reaching this performance can be views as a 
result of overcoming the main problems that 
other algorithms have such as mining with only 2 
I/O scans because of using the intelligent FP-tree 
approach, and by having relatively small 
footprint in the main memory at any given time 
due to the use of COFI-trees, and Finally by 
reducing the redundancy of the traversal by using 
the Leap-traversal approach. 
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