
ON FREQUENT ITEMSET MINING WITH CLOSURE

MOHAMMAD EL-HAJJ OSMAR R. ZA¨I¨ANE

Department of Computing Science Department of Computing Science
University of Alberta, Edmonton University of Alberta, Edmonton

AB, Canada T6G 2E8 AB, Canada T6G 2E8
 mohammad@cs.ualberta.ca zaiane@cs.ualberta.ca

Keywords: Database, Data Mining,
Frequent pattern mining, traversal
approaches.

ABSTRACT

Efficient discovery of frequent patterns
from large databases is an active research area in
data mining with broad applications in industry
and deep implications in many areas of data
mining. Although many efficient frequent-
pattern mining techniques have been developed
in the last decade, most of them assume
relatively small databases, leaving extremely
large but realistic datasets out of reach.

 A practical and appealing direction is
to mine for closed or maximal itemsets. These
are subsets of all frequent patterns but good
representatives since they eliminate what is
known as redundant patterns. The practicality of
discovering closed or maximal itemsets comes
from the relatively inexpensive process to mine
them in comparison to finding all patterns. In
this paper we introduce a new approach for
traversing the search space to discover all
frequent patterns, the closed or the maximal
patterns efficiently in extremely large datasets.
We present experimental results for finding all
three types of patterns with very large database
sizes never reported before. Our implementation
tested on real and synthetic data shows that our
approach outperforms similar state-of-the-art
algorithms by at least one order of magnitude in
terms of both execution time and memory usage,
in particular when dealing with very large
datasets.

1 INTRODUCTION

Discovering frequent patterns is a
fundamental problem in data mining. Many
efficient algorithms have been published on this
problem in the last 10 years. Most of the existing
methods operate on databases made of

comparatively small database sizes. Given
different small datasets with different
characteristics, it is difficult to say which
approach would be a winner. Moreover, on the
same dataset with different support thresholds
different winners could be proclaimed.

 Difference in performance becomes
clear only when dealing with very large datasets.
Novel algorithms, otherwise victorious with
small and medium datasets, can perform poorly
with extremely large datasets. There is obviously
a chasm between what we can mine today and
what needs to be mined. It is true that new
attempts toward solving such problems are made
by finding the set of frequent closed itemsets
(FCI) [11, 12, 13] and the set of maximal
frequent patterns [3, 7, 8].

1.1 PROBLEM STATEMENT

The problem of mining association rules
in transactional data was introduced in [1]. The
data could be retail sales in the form of customer
transactions, text documents, or even medical
images. Association rules have been shown to be
useful for applications such as market basket
analysis, decision support, telecommunication,
diagnosis, affinity analysis, recommender
systems, etc. Most association rule algorithms
generate association rules in two steps: (1)
Generate all frequent itemsets, and (2) Construct
all rules using these itemsets. In this paper, we
are solely interested in the first step.

Formally, as defined in [2], the problem
is stated as follows: Let I = {i1; i2;..; im} be a set
of literals, called items and m is considered the
dimensionality of the problem. Let D be a set of
transactions, where each transaction T is a set of
items such that T is a subset of I. A unique
identifier TID is given to each transaction. A
transaction T is said to contain X, a set of items
in I, if X is a subset of T. An association rule is
an implication of the form “X ≡> Y ”, where X is

a subset of I, Y is a subset of I, and X ∩ Y = Φ.
An itemset X is said to be frequent if its support
s is greater than or equal to a given minimum
support threshold σ. A frequent itemset M is
considered maximal if there is no other frequent
set that is a superset of M. A frequent itemset C
is considered closed if there is no other frequent
set that is a superset of C and has the same
support as C.

1.2 RELATED WORK

The most important, and at the basis of
many other approaches and algorithms, is apriori
[2]. The property that is at the heart of apriori
and forms the foundation of most algorithms
simply states that for an itemset to be frequent all
its subsets have to be frequent. This anti-
monotone property reduces the candidate itemset
space drastically. However, the generation of
candidate sets, especially when very long
frequent patterns exist, is still very expensive.
Moreover, apriori is heavily I/O bound. Another
approach that avoids generating and testing
many itemsets is FP-Growth [9]. FP-Growth
generates, after only two I/O scans, a compact
prefix tree representing all sub-transactions with
only frequent items. A clever and elegant
recursive method mines the tree by creating
projections called conditional trees and discovers
patterns of all lengths without directly generating
all candidates the way apriori does. However,
the recursive method to mine the FP-tree requires
significant memory, and large databases quickly
blow out the memory stack. Another innovative
approach is COFI [5]. COFI is faster or as fast as
FP-Growth and requires significantly less
memory. The idea of COFI, which we adopt in
this paper, is to build projections from the FP-
tree each corresponding to sub-transactions of
items co-occurring with a given frequent item.
These trees are built, efficiently mined and
discarded one at a time making the footprint in
memory significantly small. The COFI algorithm
generates candidates using a top down approach,
where its performance shows to be severely
affected while mining databases that have
potentially long candidate patterns that turn to be
not frequent, as COFI needs to generate
candidate subpatterns for all its candidate
patterns. We build upon this approach by
changing the traversal approach, and finding the
set of closed or maximal frequent patterns. We
also resolve the problem of COFI using a new
data structure. Finding the set of closed frequent
patterns has been studied in the literature. In this

section we will examine four state-of-the-art
algorithms in this area, A-Close [11] is an
apriori-like algorithm. This algorithm mines
directly for closed frequent itemsets. It uses a
breadth-search strategy. This algorithm shows to
be one-order of magnitude faster than apriori,
when mining with a small support. This
algorithm shows, however, poor performance
compared to apriori when mining with high
support especially when we find a small set of
frequent patterns as it consumes most of its
computation power in computing the closure of
itemsets. This algorithm did also show weak
results when mining relatively long patterns.
CLOSET+ [12] is an extension of the FP-Growth
algorithm. MAFIA [3] is originally designed to
mine for maximal itemsets, but it has an option
to mine for closed itemsets. It uses a vertical
bitmap representation. CHARM [13] is just like
MAFIA in using a vertical representation of the
database. It adopts the Diffset technique to
reduce the size of intermediate tidsets. Mining
the set of maximal patterns has also been
investigated at length. where some of the state-
of-the-art algorithms are: GENMAX [7],
MAFIA [3], and FPMAX [8].

1.3 CONTRIBUTIONS

In this paper we propose a new traversal
approach for the itemset lattice called leap-
traversal. Based on this approach we propose a
framework of efficient algorithms, founded on
our previously proposed COFI-trees in [5, 4] and
FP-trees presented in [9], for finding closed,
maximal, and all patterns called COFI-CLOSED,
COFI-MAX, and COFI-ALL, forming the
YAFIMA package (Yet Another Frequent
Itemset Mining Algorithms). These algorithms
mine effectively small and extremely large
databases. They use a novel technique to
generate candidates and to count their supports.

 We also propose a new structure to
partition the itemsets helping the handling of
patterns of arbitrary length. Since testing whether
patterns are subsets of others is a fundamental
operation for closed and maximal itemset
mining.

We show that our approach with the
new set of algorithms is efficient to mine
extremely large datasets. The rest of this paper is
organized as follows: We explain our new
traversal approach in Section 2. The new COFI-

based algorithms YAFIMA are explained in
Section 3 with illustrative examples. Section 4
depicts the performance evaluation of this new
approach comparing it with existing state-of-the-
art algorithms in particular for its speed,
scalability, and memory usage on dense and
sparse data. Section 5 concludes and highlights
our observations.

2 LEAP-TRAVERSAL APPROACH

Current algorithms find patterns by
using one of the two methods, namely: breadth-
search or depth-search. Breadth-search can be
viewed as a bottom-up approach where the
algorithms visit patterns of size k + 1 after
finishing the k sized patterns. The depth-search
approach does the opposite where the algorithm
starts by visiting patterns of size k before visiting
those of size k + 1. Both methods show some
redundancy in mining specific datasets. [12]
stated that the breadth-search is not the way to
go. It recommends the depth-search method to
mine for frequent long patterns. It is known that
many datasets have short frequent patterns. Even
for datasets that have long patterns, it does not
mean at all that the patterns generated will be
long. Many other frequent patterns are still short,
and mining them using depth-search method
might result in bad performance. In general, both
methods show some efficiency while mining
some databases. On the other hand, they showed
weaknesses or inefficiency in many other cases.

To understand this process fully, we
will try to focus on the main advantages and
drawbacks of each one of these methods in order
to find a way to make use of the best of both of
them, and to diminish as much as possible their
drawbacks. As an example, in the context for
mining for maximal patterns, assume we have a
transactional database that is made of a large
number of frequent 1-itemsets, and has maximal
patterns with relatively small lengths. The trees
built from such database are usually deep as they
have a large number of frequent 1-itemsets
especially if they are made of relatively long
transactions. Traversing in depth-search manner
would provide us with potential long patterns
that end-up non-frequent. In such cases, the
depth-search method is not favored. However, if
the maximal patterns generated are relatively
long with respect to the depth of the tree, then
the depth-search strategy is favored as most of
the potential long patterns that could be found
early tend to be frequent. Consequently, many

pruning techniques could be applied to reduce
the search space. On the other hand, mining
transactional databases that reveal long maximal
patterns is not favored using breadth-search
manner, as such algorithms consume many
passes over the database to reach the long
patterns. Such algorithms generate many
frequent patterns at level k that would be omitted
once longer superset patterns at level k + 1, or k
+ l for any l, appear. These generation and
deletion steps become a bottleneck while mining
transactional databases of long frequent patterns
using the breadth-search methods.

 From the above, we can summarize the
main drawbacks of each one of these methods as
follows: Bottom-up approaches generate too
many frequent patterns that turn out to be not
part of the maximal set and get deleted as longer
frequent superset patterns appear. The longer
maximal patterns we have, the more severe this
problem becomes. For example; to find a
frequent pattern of size 10 we need to find all
patterns of sizes 1 to 9 before we reach the
maximal pattern of size 10. Consequently, all
these patterns are deleted and do not participate
in the maximal answer set. On the other hand,
the top-down approaches suffer from traversing
many n + k non-frequent patterns until we reach
the maximal frequent patterns of size k, n being
the maximal depth of the tree.

The following example demonstrates
how both approaches work. Figure 1.A depicts
10 projected transactions made of 12 items. All
items share at least one transaction with item A.
If we want to mine with support greater than 4,
then all items would become frequent. Three
maximal patterns are generated. These patterns
are (ABCDE:6) of size 5, (AFGHI:5) also of size
5 and (AJKL:5) of size 4. The number after a
pattern represents its support. Discovering these
patterns using the top-down approach (depth-
search) requires mining a tree of depth 9 which is
the size of longest potential pattern:
(ABCDEFGI). Although none of the potential
patterns of size 9 to 6 are frequent, we still need
to generate and test them. This generation
process continues until we reach the first
maximal patterns of size 5: (ABCDE:6) and
(AFGHI:5). Many pruning techniques can then
be applied to reduce the remaining search space.
The bottom-up approach needs to create all
patterns from sizes 2 to 6 at which point it can
detect that there are no more maximal patterns to
discover. All non-maximal frequent patterns of

sizes 2 to 6 would be removed. We propose a
combination of these approaches that takes into
account a partitioning of the search space `a la
COFI-tree. We call this method the leap-traversal
approach since it selectively jumps within the
lattice and suggests a set of patterns from
different sizes to test where the frequent patterns
(all, closed, or maximals) are subset of this
suggested set.

To illustrate the traversal, we take the
case of closed itemsets. Step one of this approach
is to look at the nature of the distribution of
frequent items in the transactional database. If
we revisit the example presented above from,
Figure 1.A, we can see that there are only 4
distributions of frequent items. Indeed, A, B, C,
D, E, F, G, H, I occurs 3 times; A, B, C, D, E, J,
K, L occurs also 3 times; A, F, G, H, I occurs
twice; and A, J, K, L also occurs twice. We call
each one of these patterns a frequent-path-base.
Step 2 of this process intersects each one of these
patterns with all other combinations of frequent-
path-bases to get a set of potential candidates.
Step 3 counts the support of each one of the
generated patterns. The support of each one of
them is the summation of supports of all its
superset of frequent-path-base patterns. Step 4
scans these patterns to remove non-frequent ones
or frequent ones that already have a frequent
superset with the same support. The remaining
patterns can be declared as closed patterns.
Figure 1.B illustrates the steps needed to
generate the closed patterns of our example from
Figure 1.A. The major goals of this approach are
the followings:

1. Avoid the redundancy of testing
patterns either from size 1 until patterns of size k,
where k is the size of the longest frequent pattern
or from patterns of size n until patterns of size k,
where n is the size of the longest candidate
pattern.

2. We only check the longest potential
patterns that already exist in the transactional
database, even if they are of different lengths. In
Figure 1.A we can find that there is no need to
test patterns such as ABJ or AFC since they
never occur in the transactional database. We
also do not need to test patterns such as AB since

they never occur alone without any other
frequent items in the transactional databases.

The main question in this approach is
whether we could efficiently find the frequent-
path-bases. The answer is yes, by using the FP-
tree [9] structure to compress the database and to
avoid multiple scans of the databases and COFI-
trees [5] to partition the sub-transactions as we
wish to do, to generate the frequent-path-bases
as illustrate in the next section.

3 COFI-BASED ALGORITHMS

In this section we explain the three
mining algorithms COFI-CLOSED, COFI-
MAX, and COFI-ALL. COFI-CLOSED is
explained in details while COFI-MAX and
COFI-ALL are explained later by only
highlighting their differences from the COFI-
CLOSED algorithm.

3.1 COFI-CLOSED ALGORITHM

COFI-CLOSED algorithm is explained
by a running example. The complete pseudo-
code of the algorithm is detailed in Figure 2.A.
The transactional database in Figure 3.A needs to
be mined using support greater or equal to 3. The
first step is to build the FP-tree data-structure in
Figure 3.B. This FP-tree data structure reveals
that we have 8 frequent 1-itemsets. These are
(A:10, B:8, C:7, D:7, E:7, F:6, G:5, H:3). COFI-
trees are built after that one at a time starting
from the COFI-tree of the frequent item with
lowest support, which is H. We refer the reader
to [5] for more reading about COFI-tree. Since,
in the order imposed, no other COFI-tree has
item H then any closed pattern generated from
this tree is considered globally closed. This
COFI-tree generates the first closed pattern HA:
3. After that, H-COFI-tree is discarded and G-
COFI-tree, in Figure 3.C, is built and it generates
(GABCD:3, GABC:4, GAE:3, GAD:4, and
GA:5), a detailed explanation of the steps in
generating these frequent patterns are described
later in this section. F-COFI-tree is created next
and it generates all its closed patterns using the
same method explained later.

Figure 1: (A): Projected transactional database with respect to item A. (B): Steps needed to generate
closed patterns using the leap-traversal approach (√ indicates a discovered closed pattern. Barred
entries are the eliminated candidates)

(A) (B)

Figure 2: (A) COFI-CLOSED Algorithm. (B) Steps needed to generate closed patterns using OPB for
the G-COFI-tree

Figure 3: (A) A Transactional database. (B) FP-Tree built from (A). (C) G-COFI-tree pointers from
header tables are not presented

3.2 MINING A-COFI-TREE

Mining a COFI tree starts by finding the
frequent-path-bases. As an example, we will
mine the G-COFItree in Figure 3.C for closed
patterns. We start from the most globally
frequent item, which is A, and then traverse all
the A nodes. If the support is greater than
participation then the complete path from this
node to the COFI-root is built with branch-
support equals to the difference between the
support and participation of that node. All
values of participation for all nodes in these
paths are updated with the participation of the
original node A. Frequent-path-bases (A, B, C,
D: 2), (A, B, C, E: 1), (A, D, E: 1), and (A, B, C,
D, E: 1) are generated from this tree. From these
bases we create a special data structure called
Ordered-Partitioning-Bases (OPB). The goal of
this data structure is to partition the patterns by
their length. Patterns with the same length are
grouped together. This, on one hand allows
dealing with patterns of arbitrary length, and on
the other hand allows traversing the pattern space
from the longest ones to the shortest ones and
directly prunes the short ones if a frequent
superset with same support is discovered as a
candidate closed pattern. This OPB structure is
an array of pointers that has a size equal to the
length of the largest frequentpath-base. Each
entry in this array connects all frequent-path-
bases of the same size. The first entry links all
frequent-path-bases of size 1, the second one

refers to all frequent-path-bases of size 2, the nth
one points to all frequent-path-bases of size n.
An illustrative example can be found in Figure
2.B. Each node of the connected link list is made
of 4 variables which are: the pattern, a pointer to
the next node, and two number variables that
represent the support and branch-support of this
pattern. The support reports the number of times
this pattern occurs in the database. The branch-
support records the number of times this pattern
occurs alone without other frequent items, i.e.
not part of any other superset of frequent
patterns. This branch-support is used to identify
the frequent-path-bases from non-frequentpath-
bases as non-frequent-path-bases have branch-
support equal to 0, while a frequent-path-base
has branch-support equal to the number of times
this pattern occurs independently. The branch-
support is also used to count the support of any
pattern in the OPB. The support of any pattern is
the summation of the branch-supports of all its
supersets of frequent-path-bases. For example,
to find the support for pattern X that has a length
of k, all what we need to do is to scan the OPB
from k + 1 to n where n is the size of OPB, and
sum the branch-supports of all supersets of X
that do not have a branch-support equal to 0, i.e.
the frequent-path-bases. The superset of X, as
explained before are easily found using the prime
codes.

In the above example, the first step is to
build the OPB structure. The first pointer of this
OPB structure points to 5 nodes which are (A, 5,

0), (B, 4, 0), (C, 4, 0), (D, 4, 0), and (E, 3, 0)
which can be taken from the local frequent array
of the G-COFI-tree (Figure 3.C). The first
number after the pattern presents the support,
while the second number presents the branch-
support. The Second entry in this array points to
all frequent-path-bases of size two. A null
pointer is being linked to this node since no
frequentpath- bases of size two are created. The
third pointer points to one node which is (ADE,
1,1), the fourth points to (ABCD: 2: 2) and
(ABCE: 1, 1), the fifth and last points to
(ABCDE: 1:1). The leap-traversal approach is
applied in the second step on the 4 frequent-
path-bases, which are (ABCDE: 1: 1, ABCD:2
:2, ABCE: 2: 1, and ADE: 2: 1). Intersecting
ABCDE with ABCD gives ABCD, which
already exists, so nothing needs to be done.
Same occurs when interesting ABCDE with
ABCE. Intersecting ABCDE with ADE gives
back ADE, which also already exists.
Intersecting ABCD with ABCE gives ABC.
ABC is a new node of size three. It is added to
the OPB data structure and linked from the third
pointer as it has a pattern size of 3. The support
and the branch-support of this node equals to 0.
Branch-support equals to 0 indicates that this
pattern is a result of intersecting between
frequent-path-bases and a non-frequentpath-
base. Intersecting ABCD with ADE gives AD.
AD is a new node of size two. It is added to the
OPB data structure and linked from the second
pointer. The support and the branch-support of
this node equal 0. Intersecting, ABCE with ADE
gives AE. AE is also a new node of size two and
is also added to the OPB structure, and at this
stage we can detect that no more intersection is
needed. The third step in the mining process is to
find the global support for all patterns. Applying
a top-down traversal between these nodes does
this. If node X is a subset of a frequent-path-base
Y then its support is incremented by the branch-
support of node Y. By doing this we can find that
ABCD is a subset of ABCDE, which has a
branch-support equals to 1. The ABCD support
becomes 3 (2+1). ABCE support becomes 2, as it
is a subset of ABCDE. At level 3 we find that
ADE is a subset of only ABCDE so its support
becomes 2. ABC support equals to 4. AD
support equals to 4, and AE support equals to 3.
At this stage all non-frequent patterns and
frequent patterns that have a local frequent
superset with the same support are removed from
OPB. The remaining nodes (ABCD:3, ABC:4,
AE:3, AD:4, and A:5) are potentially global
closed. We test to see if they are a subset of

already discovered closed patterns with the same
support. If not, then we declare them as closed
patterns and add them to the pool of closed
patterns. These steps are presented in Figure 2.B.
The G-COFI-tree and its OBP data structure are
cleared from memory as there is no need for
them any more. The same process repeats with
the remaining COFI-trees for F and E, where any
newly discovered closed pattern is added to the
global pool of closed patterns.

3.3 COFI-MAX

Finding the maximal frequent items
differs from finding the set of closed patterns by
applying the following pruning techniques:

(A) skip building some COFI-trees: Before we
build any COFI-tree, we check all its local
frequent items, if all its items are subsets of
already discovered maximal patterns, then there
is no need to build and mine this COFI-tree as all
its sub-patterns are subsets of already discovered
maximal patterns.

(B) Remove all frequent-path-bases that are
subset of already found maximal patterns:
Each frequentpath-base is checked first to see if
it is part of an already existing maximal pattern.
If this check returns true, then there is no need to
test this pattern, as it is already frequent, and a
subset of a maximal pattern.

(C) Count the support of frequent-path-bases
early, and remove the frequent ones from the
leaptraversal approach: The first step done
after finding the frequent-path-bases is to find
their global support. The support of each
frequent-path-base is the summation of its
branch-support with the branchsupport of all its
superset of frequent-path-bases. All frequent
frequent-path-bases are removed from the leap-
traversal approach as they will only give subsets
of frequent patterns and will not provide us with
any new information in the context of searching
for maximal patterns. By doing this, we reduce
the intersection and counting operations done
during the leap-traversal approach. Other than
this, the same steps applied to find the closed
patterns are also applicable to find the set of
maximal pattern.

3.4 COFI-ALL

Finding the set of all frequent patterns is
simply done by finding the set of local maximal
for each COFItree. There is no need to keep
track of globally maximal patterns. From each
locally maximal pattern,we generate its subsets.
These are the frequent itemsets. We only need to
find their respective support. The support of
each pattern is the summation of the branch-
support of all its superset of frequent-path-bases.

4 PERFORMANCE EVALUATIONS

In this section we present a performance
study to evaluate our new approach YAFIMA
against most of the state-of-art algorithms that
mine all, closed and maximal patterns. FPMAX
and MAFIA were used for all three types of
patterns, while Eclat was used to mine for all
frequent patterns, CHARM to mine for closed
itemsets, and finally GENMAX to mine for
maximal frequent itemsets. Their respective
authors provided us with the source code for
these programs. All our experiments were
conducted on an IBM P4 2.6GHz with 1GB
memory running Linux 2.4.20-20.9 Red Hat
Linux release 9. Timing for all algorithms
includes the pre-processing cost such as
horizontal to vertical conversions. The time
reported also includes the program output time.
We have tested these algorithms using both real
and synthetic datasets on small and very large
datasets. All experiments were forced to stop if
their execution time reached our wall time of
5000 seconds. We made sure that all algorithms
reported the same exact set of frequent itemsets
on each dataset. Finally, we could not report all
our excrements in this work due to the lack of
space.

4.1 EXPERIMENTS ON SMALL
DATASETS

In this set of experiments we tested
many datasets, UCI datasets and synthetic ones,
with one goal in our mind: Finding the best
mining algorithm. We tested all the enumerated
algorithms using 4 databases downloaded from
[6]. These databases are chess, mushroom,
pumsb, and accidents. We have also generated
synthetic datasets using [10]. In these sets of
experiments we confirmed the conclusion made
at the FIMI 2003 workshop [6], that there are no
clear winners with small databases. Indeed,

algorithms that were shown to be winners with
some databases were not the winners with others.
Some algorithms quickly lose their lead once the
support level becomes smaller. Figure 4, depicts
as an example the winner algorithms for these
datasets.

4.2 SCALABILITY

Mining extremely large databases is the
main objective of this research work. We used
five synthetic datasets made of 5M, 25M, 50M,
75M, 100M transactions, with a dimension of
100K items, and an average transaction length of
24 items. To the best of our knowledge these
data sizes have never been reported in the
literature before. Eclat, CHARM, and GENMAX
could not mine these datasets. MAFIA could not
mine the smallest dataset 5M in the allowable
time frame. Only FPMAX and YAFIMA
algorithms participated in this set of
experiments. FP-Growth was able to mine
efficiently for all frequent patterns up to 5
millions. After that point, FP-Growth could not
return a result. COFI-ALL efficiently found the
set of all patterns up to 100M transactions. For
the set of closed itemsets and the set of maximal
itemsets FP-CLOSED and FPMAX mined up to
50M transactions, while COFI-CLOSED and
COFI-MAX mined all databases up to 100M
transactions efficiently. All results are depicted
in Figure 5. From these experiments we can see
that the difference between FPMAX
implementations and the YAFIMA algorithms
become clearer once we mine extremely large
datasets.YAFIMA saves at least one third of the
execution time and in some cases goes up to half
of the execution time compared to FP-Growth
approach.

4.3 MEMORY USAGE
We also tested the memory usage by

FPMAX, MAFIA and our approach. In many
cases we noticed that our approach consumes
one order of magnitude less memory than
FPMAX and two orders of magnitude less
memory than MAFIA. Figure 6 illustrates these
results. We conducted experiments with the
database size, the dimension and average
transaction length 1 million transactions, 100K
items and 12 items respectively. The support was
varied from 0.1% to 0.01%. This huge difference
in memory usage is due to the fact that YAFIMA
algorithms clear every COFI-tree or OPB
structure directly once the local patterns are

determined. It never has two COFI-trees or two
OPB structures in main memory at the same
time. FPMAX, however, uses a recursive
technique that keeps building the conditional
trees for each frequent item tested and thus uses
much more memory. Figure 6.C shows the three
algorithms for finding maximal patterns. At a
low support, MAFIA consumed all available
memory and started swapping on disk. We
remover MAFIA from the figures for closed and
all itemsets to allow better seeing the difference
between FP-Growth and COFI-ALL in Figure
6.A and FP-CLOSED and COFI-CLOSED in
Figure 6.B. In both cases FPMAX used more
than four times the amount of memory.

5 CONCLUSION

Most of frequent itemset mining
algorithms assume to work on relatively small
dataset in comparison to what we are expected to
deal with in real applications such as affinity
analysis in very large web sites, basket analysis
for large department stores, or analysis of
tracking data from radio-frequency identification
chips on merchandize. Performance analysis on
small datasets cannot discriminate between
frequent itemset mining algorithms; and when
the execution time is in order of few seconds, the

selection of algorithms becomes irrelevant. Yet
with extremely large databases the issue seems
still an open-problem since most of the existing
algorithms cannot mine huge databases using
either low or high support. In this work we
presented YAFIMA, a set of new algorithms for
mining all, closed and maximal patterns. These
novel algorithms are based on existing data
structures FP-tree and COFI-tree. Our
contribution is a new way to mine those existing
structures using a novel traversal approach, and a
set of pruning methods to accelerate the
discovery process. The idea is to either find the
maximal or closed itemsets and expend them to
find all frequent patterns. Our performance
studies show that our approach can compete with
the existing state of the art algorithms in many
small datasets (real and synthetic). Even when it
was not the winner, the difference was relatively
small between its performance and the
performance of winner. Yet, when we mine
extremely large datasets, our performance
studies showed that the YAFIMA set was able to
mine efficiently 100 million transactions in less
than 5000 seconds on a small desktop while
other known approaches failed.

Figure 4: Mining different small datasets: The winner algorithms

Figure 5: Scalability with very large dataset

Figure 6: Disparity in memory usage

Reaching this performance can be views as a
result of overcoming the main problems that
other algorithms have such as mining with only 2
I/O scans because of using the intelligent FP-tree
approach, and by having relatively small
footprint in the main memory at any given time
due to the use of COFI-trees, and Finally by
reducing the redundancy of the traversal by using
the Leap-traversal approach.

REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami.
Mining association rules between sets of items in
large databases. In Proc. 1993 ACM-SIGMOD
Int. Conf. Management of Data, pages 207–
216,Washington, D.C., May 1993.
[2] R. Agrawal and R. Srikant. Fast algorithms
for mining association rules. In Proc. 1994 Int.
Conf. Very Large Data Bases, pages 487–499,
Santiago, Chile, September 1994.
[3] D. Burdick, M. Calimlim, and J. Gehrke.
Mafia: A maximal frequent itemset algorithm for
transactional databases. In ICDE, pages 443–
452, 2001.
[4] M. El-Hajj and O. R. Za¨ıane. Inverted
matrix: Efficient discovery of frequent items in
large datasets in the context of interactive
mining. In In Proc. 2003 Int’l Conf. on Data
Mining and Knowledge Discovery (ACM
SIGKDD), August 2003.
[5] M. El-Hajj and O. R. Za¨ıane. Non recursive
generation of frequent k-itemsets from frequent
pattern tree representations. In In Proc. of 5th
International Conference on Data Warehousing
and Knowledge Discovery (DaWak’2003),
September 2003.
[6] B. Goethals and M. Zaki. Advances in
frequent itemset mining implementations:
Introduction to fimi03. In Workshop on Frequent
Itemset Mining Implementations (FIMI’03) in
conjunction with IEEE-ICDM, 2003.

[7] K. Gouda and M. J. Zaki. Efficiently mining
maximal frequent itemsets. In ICDM, pages 163–
170, 2001.
[8] G. Grahne and J. Zhu. Efficiently using
prefix-trees in mining frequent itemsets. In
FIMI’03, Workshop on Frequent Itemset Mining
Implementations, November 2003.
[9] J. Han, J. Pei, and Y. Yin. Mining frequent
patterns without candidate generation. In 2000
ACM SIGMOD Intl. Conference on Management
of Data, pages 1–12, 2000.
[10] IBM Almaden. Quest synthetic data
generation code.
http://www.almaden.ibm.com/cs/quest/syndata.h
tml.
[11] N. Pasquier, Y. Bastide, R. Taouil, and L.
Lakhal. Discovering frequent closed itemsets for
association rules. In International Conference on
Database Theory (ICDT), pages pp 398–416,
January 1999.
[12] J. Wang, J. Han, and J. Pei. Closet+:
Searching for the best strategies for mining
frequent closed itemsets. In Proceedings of the
Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining
(KDD’03), Washington, DC, USA, 2003.
[13] M. Zaki and C.-J. Hsiao. ChARM: An
efficient algorithm for closed itemset mining. In
2nd SIAM International Conference on Data
Mining, April 2002.

